Joint News Release

For the audio version of today’s news release please visit https://nexoptic.com/news/

NexOptic Completes Detailed Mobile Device Lens Stack Design Phase

Engineering Intensive Second Phase Expands Potential Lens Technology Pipeline for NexOptic

**Vancouver, Canada – October 11, 2017 - NexOptic Technology Corp. ("NexOptic") (OTCQB: NXOPF) (TSX VENTURE: NXO) (FRANKFURT: E301) (BERLIN: E301) and Spectrum Optix Inc. of Calgary, Canada ("Spectrum,")) and together with NexOptic, (the "Companies") are pleased to announce they have successfully completed the second phase of engineering for their, previously announced, mobile device telephoto lens demonstration prototype.

For technology development purposes, during the last several months the Companies engaged with participants in the mobile device industry and reviewed specifications of current smartphone offerings. The current designs are scalable from small to large configurations, demonstrating the potential for use in diverse optical applications.

Phase 2 Summary

The completed second phase of the mobile prototype development focused primarily on engineering. It included defining and optimizing, via optical simulations, the mobile lens system’s "f-number", focal length, potential resolution capabilities, and aperture size. The second phase also included initial tolerancing, initial manufacturability assessment, sourcing potential sensor candidates and selecting optical element materials.

The second phase of development for NexOptic’s mobile device prototype, which when built is intended to demonstrate to industry participants a telephoto lens system for smartphones, resulted in the opportunity to offer two lens stack designs with the potential for a third. Both lens stack designs substantially increase the potential aperture size and focal length compared to known smartphone imaging systems currently in the market. Increasing the aperture size and focal length within the depth constraints of a smartphone (approximately 6 to 7 millimeters) creates the potential to capture higher quality imagery at long ranges with these iconic consumer devices. Additionally, increasing aperture size enables a lens system to have a much better diffraction limit than a smaller aperture system, thus providing the potential for significantly improved resolution capabilities.

Both the aforementioned mobile lens stack designs differ from the Companies’ recently granted patent from the USPTO, which was foundational in the proof of concept telescope prototype released earlier this year. Additionally, the two designs enable a wider field of view than the initial Diamond Blade Optics™ design
for mobile devices (for further information see joint news release dated April 4, 2017). The companies believe this will provide a more adaptable user experience given current mobile imaging trends. Further research and development on the Diamond Blade Optics™ design is ongoing, and is being considered for several applications in both the mobile device and sport optics industries.

John Daugela, President of Spectrum Optix and Director of NexOptic, stated, “After collecting industry feedback and internal research, we believe our designs provide the largest apertures and longest focal lengths within the given depth constraints of a typical smartphone - two key contributing specifications for telephoto systems. Both our lens designs for smartphones have shown potential to offer the marketplace much improved long-range imaging capabilities.”

Mr. Daugela continued:

“Although mobile device imaging systems have similar depth constraints across the board, there isn’t a ‘one size fits all’ telephoto lens design in respect to specifications of the overall lens stack. While telephoto and dual lens systems in smartphones are the future, we’ve learned from meeting with industry participants that different mobile lens manufacturers desire varying specs, often requiring substantial differences in design. As such, we believe it is advantageous to engineer more than one lens stack design for mobile devices.”

Paul McKenzie, CEO of NexOptic, stated, “Designed with the essence of being able to better acquire images at a distance whilst being housed in a smartphone depth of 6 to 7mm, our engineering efforts have produced more than one optical lens stack design for mobile devices, each with their own magnification capability, aperture size, f-number and effective focal length, among other specifications. This could allow NexOptic to essentially tailor a design for a potential partner’s specifications. Our lead lens design for mobile devices will be expeditiously advanced to the demonstration stage while other mobile device lens designs are refined to potentially provide a pipeline of future offerings for this space.”

Upcoming Phase of Mobile Device Lens Stack Development

The third phase of development for the Companies’ mobile device imaging system will include completing an opto-mechanical design for the initial lens stack and finalizing the selection of suppliers for the optics, image sensor, and associated electronics. The third phase may also include detailed technical analysis such as stray light, thermal sensitivity, and manufacturing optimization. Additionally, alternative methods to mount and focus the lens system will be evaluated in this phase.

Corporate Development and Intellectual Property Strategy

Having recently completed a private placement of roughly $7.4 million in August, the Companies are currently well financed. They have scaled-up their engineering team and overall technology development efforts in recent weeks - which includes intellectual property development and the opening of a technology development center in Edmonton, Alberta for their expanded in-house technical team.
With the recent addition of new technical personnel to its development team, both hardware and software related, management's goal is to grow NexOptic into a creative optical development company capable of enabling new media platforms for both consumer and industrial verticals. The Companies’ growing development team makes it operationally attainable to simultaneously work on several optical design iterations and innovations. Pursuing the advancement of multiple lens stack designs may allow for quicker penetration into numerous imaging verticals.

The Companies’ intend to file several new patent applications relating to various lens stacks designs over the coming months - some of which will relate to the recently granted patent from the United States Patent and Trademark Office (USPTO) for Spectrum’s flat optical element technology utilized in the proof of concept prototype (see company press release dated June 29, 2017 for further details); and other patent applications will be focused on new lens stack designs.

Spectrum has filed a provisional patent application with the USPTO related to one of its new mobile device lens stack designs and intends to file at least one more patent application relating to its mobile lens designs. Filing of additional patent applications will be completed in tandem with the development of the demonstration mobile device prototype.

About NexOptic Technology Corp.

NexOptic is a publicly traded company, which has an option to acquire, in the aggregate, 100% of Spectrum Optix Inc. (the “Acquisition”) a private corporation. The Companies are, in essence, working as a single corporation at this time, with their respective CEOs sitting on each other's boards of directors. As was outlined in the Companies' joint September 20, 2017 news release, the completion of said Acquisition is imminent.

Spectrum is developing technologies relating to imagery and light concentration applications. Utilizing Blade Optics™, Spectrum’s suite of optical technologies, the Companies aim to increase aperture sizes within given depth constraints of various imaging and non-imaging optical applications. Blade Optics™ refers to Spectrum’s lens designs, algorithms and mechanics which vary from patented, patent pending and includes all of Spectrum’s intellectual property and know how.

Earlier this year, Spectrum completed its proof-of-concept digital telescope prototype that utilizes a patented Blade Optics™ technology, other optical elements and electronic components. The prototype is intended to demonstrate the marketable features of Spectrum's Blade Optics™ technology and its potential to serve as a platform to be used in various optical applications.

Benefits of Blade Optics™ Technology

The Companies believe that Blade Optics™ has the potential to breakdown many of the limitations associated with conventional lens stacks:

- **Aperture size:** Blade Optics™ may allow the aperture-to-depth ratio to be increased in depth-limited optical devices to permit increased resolution compared to conventional optical devices with similar depth.
Compactness: Decreasing the depth of the lens stack would create the possibility of more compact and practical imaging devices.

NexOptic trades on the OTCQB under the symbol "NXOPF," on the TSX Venture as "NXO," on Frankfurt as "E301" and Berlin as "E301." More information is available at www.nexoptic.com.

On behalf of the Boards of Directors

NexOptic Technology Corp.
Paul McKenzie, President & CEO

Spectrum Optix Inc.
John Daugela, President & CEO

www.NexOptic.com
Look@NexOptic.com
+1 (604) 669 – 7330

OTCQB: NXOPF
TSX-V: NXO
Frankfurt: E301
Berlin: E301

Forward Looking Statements

This press release contains forward-looking information and forward-looking statements within the meaning of applicable securities laws, including, but not limited to, statements with respect to expectations concerning the development of the Companies' technology, the development of the mobile lens system prototype, the potential applications of Spectrum's technologies, the Companies' ability to obtain patents and the technology's potential market impacts. The reader is cautioned that forward looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other factors which are difficult to predict and that may cause actual results or events to differ materially from those anticipated in such forward looking statements. Forward looking statements are based on the then current expectations, beliefs, assumptions, estimates and forecasts about the business and the industry and markets in which the Companies operate and are qualified in their entirety by the inherent risks and uncertainties surrounding future expectations, including, among others: risks commonly associated with the development of new technologies, including that the prototype development is at an early stage and additional work will be required to confirm potential applications and feasibility of Spectrum's technologies; the Companies may not be able complete the prototype as currently expected; when developed, the prototype may not demonstrate design specifications; the risk that the prototype may not achieve results expected by the Companies; the Companies may not be able to commercialize their technology even if the prototype is successful; patent applications may not result in grants; and other risks inherent with the patent process, transactions of this type and the business of Spectrum and/or NexOptic. Such forward looking statements should therefore be construed in light of such factors. Other
than in accordance with its legal or regulatory obligations, NexOptic is not under any obligation and it expressly disclaims any intention or obligation to update or revise any forward looking statements, whether as a result of new information, future events or otherwise.

Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this news release.